88 research outputs found

    Emergence of Chaos in Magnetic-Field-Driven Skyrmions

    Full text link
    We explore magnetic-field-driven chaos in magnetic skyrmions. Oscillating magnetic fields induce nonlinear dynamics in skyrmions, arising from the coupling of the secondary gyrotropic mode with a non-uniform, breathing-like mode. Through micromagnetic simulations, we observe complex patterns of hypotrochoidal motion in the orbital trajectories of the skyrmions, which are interpreted using bifurcation diagrams and local Lyapunov exponents. Our findings demonstrate that different nonlinear behaviors of skyrmions emerge at distinct temporal stages, depending on the nonlinear dynamic parameters. Investigating the abundant dynamic patterns of skyrmions during the emergence of chaos not only enhances device reliability but also provides useful guidelines for establishing chaos computing based on skyrmion dynamics

    Gyrotropic linear and nonlinear motions of a magnetic vortex in soft magnetic nanodots

    Get PDF
    The authors investigated the gyrotropic linear and nonlinear motions of a magnetic vortex in soft magnetic cylindrical nanodots under in-plane oscillating magnetic fields of different frequencies and amplitudes, by employing both micromagnetic simulations and the numerical solutions of Thiele's equation of motion [Phys. Rev. Lett. 30, 230 (1973)]. Not only noncircular elliptical vortex-core orbital trajectories in the linear regime but also complex trajectories including stadiumlike shape in the nonlinear regime were observed from the micromagnetic simulations and were in excellent agreement with the numerical solutions of the analytical equations of motion. It was verified that the numerical solutions of Thiele's equation are promisingly applicable in order to predict and describe well such complex vortex gyrotropic linear and nonlinear motions in both the initial transient and later steady states. These results enrich the fundamental understanding of the linear and nonlinear motions of vortices in confined magnetic elements in response to oscillating driving forces.open352

    Spin-wave interference

    Get PDF
    Spin-wave interference is demonstrated in the micromagnetic modeling of a specially designed geometry made of variously shaped magnetic thin-film waveguides. When spin waves are diffracted through two separate openings, corresponding to the two pinholes in the second screen of Young's apparatus, they interfere constructively or destructively in a magnetic medium, thereby showing distinct interference patterns. Furthermore, the radiation, propagation, transmission, and dispersion behaviors of spin waves as well as the filtering of their lower frequencies are investigated in the present modeling study. These results directly confirm not only the wave characteristics of spin waves traveling at ultrafast speeds in variously shaped magnetic waveguides but also their interference effect, that is similar to that observed in well-known Young's double slit experiment with light.open312

    Remarkable enhancement of domain-wall velocity in magnetic nanostripes

    Get PDF
    Remarkable reductions in the velocity of magnetic-field (or electric current)-driven domain-wall (DW) motions in ferromagnetic nanostripes have typically been observed under magnetic fields stronger than the Walker threshold field [N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974)]. This velocity breakdown is known to be associated with an oscillatory dynamic transformation between transverse- and antivortex (or vortex)-type DWs during their propagations. The authors propose, as the result of numerical calculations, a simple means to suppress the velocity breakdown and rather enhance the DW velocities, using a magnetic underlayer of strong perpendicular magnetic anisotropy. This underlayer plays a crucial role in preventing the nucleation of antivortex (or vortex)-type DWs at the edges of nanostripes, in the process of periodic dynamic transformations from the transverse into antivortex- or vortex-type wall. The present study not only offers a promising means of the speedup of DW propagations to levels required for their technological application to ultrafast information-storage or logic devices, but also provides insight into its underlying mechanism.open383
    corecore